

Mask Integrity

Where Lithography Begins

Understand. Align. Innovate. Develop.

Effective Solutions for In-Fab EUVL Mask Cleaning

Tobias Wähler, Sherjang Singh, <u>Uwe Dietze</u>
(HamaTech APE)
Rik Jonckheere, Bart Baudemprez
(IMEC)

- Background
- Infrastructure Aspects
- EUVL Mask Cleaning
- Experimental Cleaning Results
 - Carbon Removal
 - Particle Removal
 - Surface Integrity
- Summary & Conclusions

- Background
- Infrastructure Aspects
- EUVL Mask Cleaning
- Experimental Cleaning Results
 - Carbon Removal
 - Particle Removal
 - Surface Integrity
- Summary & Conclusions

Background

Understand. Align. Innovate. Develop.

	EUV Reflectivity	CD shift (non-uniformity)	Litho Fidelity/Stability	Mask Life Time
Ru Oxidation	+	+	\	+
C deposition	+	+	↓	+
Particles		\	+	

- Background
- Infrastructure Aspects
- EUVL Mask Cleaning
- Experimental Cleaning Results
 - Carbon Removal
 - Particle Removal
 - Surface Integrity
- Summary & Conclusions

Infrastructure Aspects

Understand. Align. Innovate. Develop.

EUVL Mask Maintenance at IMEC

Phase 1:

- Receive masks in standard 193i shipping boxes
- Manual load into ADT storage box (SB) before cleaning
- Automated load into ADT SB after cleaning Phase 1 completed!

• Eliminates manual handling of cleaned masks

imec

Limitation of shipping and manual handling remains

Infrastructure Aspects

Understand. Align. Innovate. Develop.

EUVL Mask Maintenance at IMEC

Phase 2:

- Totally avoid manual handling !!!
- Establish compatibility with EUV pod-in-pod
- Retain flexibility for variable input/output and transfer between:

2010 International Symposium on Extreme Ultraviolet Lithography

Infrastructure Aspects

Understand. Align. Innovate. Develop.

EUVL Mask Maintenance at IMEC

- Background
- Infrastructure Aspects
- EUVL Mask Cleaning
- Experimental Cleaning Results
 - Carbon Removal
 - Particle Removal
 - Surface Integrity
- Summary & Conclusions

EUVL Mask Cleaning

Understand. Align. Innovate. Develop.

EUVL Mask Cleaning POR Established at IMEC

- Background
- Infrastructure Aspects
- EUVL Mask Cleaning
- Experimental Cleaning Results
 - Carbon Removal
 - Particle Removal
 - Surface Integrity
- Summary & Conclusions

Understand. Align. Innovate. Develop.

Carbon Removal Performance

After 1x POR Clean

- A synchrotron was used to intentionally deposit carbon contamination
- Carbon contamination was removed by 1x POR clean

Understand. Align. Innovate. Develop.

PRE Performance on SiN Particles

POR applied to EUV blank

Process yielded >99 % PRE on first pass

Confirmed with further cleans

2010 International Symposium on Extreme Ultraviolet Lithography

Understand. Align. Innovate. Develop.

PRE Performance on Natural Particle Contamination (IMEC Defect 32-2)

- POR applied to EUV pattern mask
- Cleaning process yielded >97 % PRE on first pass
- < 1 adder per clean average (based on wafer defect analysis of repeat cleans)
- Remaining defects are non-removable in repeat cleaning and match typical level of absorber/blank/mask related hard defects
- No hard defects added (based on wafer defect analysis of repeat cleans)

Understand. Align. Innovate. Develop.

Conventional DIO3 Cleaning vs. POR (Blank Vendor A)

See also Poster: R. Lebert et al. "Contributions to EUV mask metrology infrastructure: Reflectometer, Blank Inspection and DPP+LPP EUV Sources"

- 10x Conventional DIO3 process caused substantial deterioration of EUV reflectivity. Magnitude suggests complete Ru removal and ML damage.
- 10x POR cleaning resulted in a slight EUV reflectivity improvement.

Understand. Align. Innovate. Develop.

EUV Reflectivity (Blank Vendor A)

Note reflectivity scale!

- EUV reflectivity still slightly increased even after 20x POR
- Slight reduction in EUV reflectivity between 10x and 20x POR may be due to:
 - Repeatability of metrology
 - Slight ML reflectivity change
 - Unequal rate of organic surface material accumulation

Understand. Align. Innovate. Develop.

XPS Analysis (Blank Vendor A)

	С	RuO	Ru	Si	Мо	SiO	S	0
Virgin	17.69	9.25	22.81	11.12	0.71	3.91	1.4	33.1
10x POR	26.29	9.69	18.03	10.83	0.87	3.29	0	31

Values in %

	С	RuO	Ru	RuO+Ru
Virgin	0.33	0.66	1.63	2.29
10x POR	0.49	0.89	1.44	2.33

Values in nm

- XPS material analysis suggests only minor changes in surface layer structure
- XPS based material thickness modeling confirms integrity of Ru capping layer
- Acid-free POR shows good Sulfur removal capability

Note: Elevated Carbon signature on 10x cleaned sample may be due to difference in sample handling prior to XPS

Understand. Align. Innovate. Develop.

EUV Reflectivity and AFM Surface Roughness (Vendor A)

D () (0 0 ATM

- Slight improvement in surface quality observed after 5x clean
- No degradation of surface roughness observed throughout 10x clean
- Slightly higher EUV reflectivity after 10x clean

Understand. Align. Innovate. Develop.

CD Uniformity Signature (Pattern EUV Mask on Blank Vendor B)

- No significant change in CD signature observed throughout 10x clean
- CD uniformity improves slightly after first two cleans
- CD uniformity constant between clean 2 and clean 10

Understand. Align. Innovate. Develop.

CD Mean (Pattern EUV Mask on Blank Vendor B)

- No change in CD mean up to 2x clean
- Slight change in CD mean after 4x clean
- Dramatic CD mean shift after 10x clean

Note: 10% CD shift exceeds the predicted effects of complete Ru loss (ML damage?)

Understand, Align, Innovate, Develop.

Potential Root Cause for CD Mean Shift After 10x Clean

- Partial damage or weakening of Ru through exposure to aggressive resist strip and cleaning during mask manufacturing
- Ru structure altered due to residual moisture on mask during EUV exposure
- Cleaning process conditions changed unnoticed
- Electrolytic erosion of Ru through surrounding TaBN absorber
- Difference in Ru structure of blanks provided by Vendor A vs. Vendor B

Further Investigation is needed!

- Background
- Infrastructure Aspects
- EUVL Mask Cleaning
- Experimental Cleaning Results
 - Carbon Removal
 - Particle Removal
 - Surface Integrity
- Summary & Conclusions

- EUV masks are contaminated during use (average of > 5 adders per week found when utilizing existing 193i infrastructure)
- Conventional DIO3 based cleaning quickly damages Ru capping
- Mask cleaning POR established at IMEC demonstrates improved results:
 - Complete removal of EUV induced Carbon with 1x clean
 - No detectable degradation in EUV reflectivity after 20x clean
 - High stability in ML structure (based on XPS)
 - No increase in surface roughness of Ru (based on AFM)
 - PRE > 97% for natural defects (handling, storage) and > 99% for SiN
 - Low particle adder rate (cleaning and ADT pod transfer)
 - No detectable feature damage after 10x clean
 - No significant CD uniformity shift after 10x clean
- Unusual CD mean shift on pattern mask requires further investigation!

2010 International Symposium on

Extreme Ultraviolet Lithography

- The useful lifetime of an EUV mask depends on:
 - Durability of surface layers (especially capping)
 - Choice of cleaning methods
 - Frequency of cleaning (MTBC Mean Time Between Cleans)
 - Acceptable ML performance loss
- Optical properties of ML can be maintained if proper cleaning techniques are employed (> 50x clean cycles within reach based on current results!).
- Blank material may have significant impact on surface layer durability (further studies are needed)
- Other factors, such as mask manufacturing techniques and EUV exposure conditions (e.g. residual moisture on mask surface) need further investigation
- Pod-in-pod infrastructure urgently needed for:
 - Mask shop backend of line
 - Shipping between mask shop and fab
 - In-fab Storage
 - In-fab transfer (e.g. between Storage/Clean/Inspection and Scanner)

- Daehyuk Kang, Hanshin Lee and Jinhong Park of Samsung for data and metrology support
- Ted Liang, Robert Chen, Sang Lee and Todd Younkin of Intel for data and metrology support
- Rainer Lebert of Bruker for EUV reflectivity metrology and data analysis
- CATRENE EXEPT for its support of EUVL technology development throughout Europe

Understand.
Our customer's success is oulnesseatebility
Develop.

